Amory Lovins: Three Major Energy Trends to Watch

Rocky Mountain Institute:

Government forecasts predict U.S. energy intensity (primary energy used per dollar of real GDP) will continue to decline roughly two percent annually through 2040, but that the drop will be steepest in automobiles.

Motivated in part by more stringent fuel economy standards coming down the pipeline, lightweighting—the core of the new “platform fitness” approach, which focuses on optimizing a vehicle’s structure first before addressing propulsion technology and fuel source—has been the industry’s hottest strategic trend for several years (see “Battling America’s Automotive Obesity Epidemic,” page 28). In short, the auto industry is finally beginning the fundamental change we’ve been advocating since 1991. And as automakers and government adopt RMI’s fitness-first, ultralighting-focused strategy, they’re finding that making costly batteries or fuel cells fewer rather than cheaper can make electric cars more affordable with less time, cost, and risk. This can save severalfold more oil than the government forecasts, use 80 percent less autobody manufacturing capital, de-risk automaking, and save (in the U.S. alone) half an OPEC’s worth of oil.

Meanwhile, U.S. autos’ four percent average asset utilization—that is, they sit idle 96 percent of the time—is driving remarkable new carsharing and ridesharing programs, smartphone apps, and emergent automaker business models based on leasing mobility services rather than selling autos. These developments, adopting Natural Capitalism’s powerful “solutions economy” business model, could profoundly reduce the need for autos to yield the same or better mobility and access at lower cost.

At the same time, efficient use of electricity—which is used three-fourths in buildings, one-fourth in industry—is finally starting to pull out of its decades-long doldrums. That’s a big deal for saving capital and climate, because producing and delivering electricity is extraordinarily capital intensive, and classically uses two to four units of fuel at the power plant to deliver one unit of electricity. Much of RMI’s work focuses on this effort, as the late Ray C. Anderson put it, to “turn stumbling blocks into stepping stones.” Efforts like RMI’s RetroFit initiative—whose toolkit, portfolio challenge, and training efforts are steadily gaining adherents—are key levers for scaling adoption by asset owners, financiers, tenants, designers, installers, and communities.

Initial returns are coming in. Electric intensity (electricity consumed per dollar of real GDP) fell in all but two years since 1996, drifting down by a total of 19 percent, but in 2012 alone, before correcting for weather, it fell by an unprecedented 3.7 percent. Spending on energy efficiency programs is way up and expected to keep climbing. Between 2006 and 2010, spending on utility energy efficiency programs more than doubled from $2 billion to $4.8 billion. Lawrence Berkeley National Laboratory and the American Council for an Energy-Efficient Economy forecast spending to double again by 2025, to $9.5–$10.8 billion under a medium scenario that merely maintains current energy efficiency policies. More aggressive efforts could see spending climb to $15.6–$16.8 billion. Increasingly propelled by utility- and customer-financed efficiency efforts (with utilities incented by changed rules that in 15 states for electricity and 20 for natural gas already reward utilities for cutting customers’ bills rather than for selling them more energy), stagnant or declining electricity demand is emerging as the “new normal,” according to The Brattle Group and Deloitte.

Just the new building codes that entered force in 2011–12 in half the states could about offset previously forecast electricity sales growth. And electricity demand could consistently shrink, dropping by one-fourth by 2050 despite a 2.6-fold bigger U.S. economy, if the lucrative efficiency gains described in Reinventing Fire were adopted over 20 years to the extent already achieved in the Pacific Northwest states. In sum, 2050 could see tripled U.S. energy productivity, on top of the more-than-doubling already achieved since 1975. That prize is worth trillions of dollars, with handsome financial returns—plus even bigger non-energy benefits we didn’t count.

Renewables Continue to Boom

The business of installing solar modules is booming. Germany took it to scale, 8 GW a year, and installed more PVs in a single month in 2011 and 2012 than the U.S. added all year. That volume also cut the German installed system cost to half ours, even though we all buy the same equipment. If the U.S. did that too, it’d have really cheap solar power, since Germany gets about as much sun as Alaska and far less than the mainland U.S. But even so, U.S. solar prices are now low enough that photovoltaics on your roof, financed with no down payment, can beat your utility bill in over a dozen states. In fact, solar accounted for 49 percent of new electric capacity installed during Q1 2013 and all new utility electricity generation capacity added to the U.S. grid during this March, according to SEIA and FERC.

The bottom line: windpower added 45 GW of global capacity in 2012, PVs about 32. These and other nonhydro renewables are continuing to win a quarter-trillion dollars’ private investment per year globally (more than all fossil and nuclear generation got) and may hit $500 billion per year or more in the foreseeable future. This is no longer a fringe activity: it’s the core of the global market and increasingly central to the United States’ energy landscape. Even so, fossil fuels enjoy hundreds of billions in global investment annually and $1.9 trillion annually in subsidies, according to IMF, so the transition is far from a foregone conclusion. But the tide may be turning.

Coal lost 28 percent of its U.S. market share to gas, renewables, and efficiency just in the past seven years, 19 percent in the past two years. “Booming” natural gas, meanwhile, saw renewable energy run a close second for new installed capacity through the first half of 2012, and in the second half of the year, new installed wind capacity alone pushed natural gas into second place. In such places as California and Texas, renewables are supplying increasingly significant amounts of electricity to the grid—in California last year, the state’s three largest shareholder-owned utilities generated 19.8 percent of their electricity from renewables, according to CPUC; Texas, leading the nation in installed wind capacity with nearly 13 GW by the end of 2012, generated more than 10 percent of its electricity from renewables in 2012, according to ERCOT, and in early 2013 was nearing 30 percent.

Momentum is shifting not just from fossil-fueled power plants to renewables but also from centralized to distributed generators. The gamechanger here is that the means of producing electricity have shifted from slow, gigantic projects—akin to building a cathedral—to scaleable, mass-produced, manufactured products. A single Chinese PV factory can make several GW of PVs every year, stamping them out 24/7, just like making smartphones and PCs—and we know what that does to prices. (China now has most of the world’s PV-making capacity, which totals at least twice what installers could use last year. That surplus crashed the price. Surprise! Some photovoltaic manufacturers were killed by Chinese competition and these lower prices, including China’s own Suntech. But China’s new 35-GW PV target for 2015 will quickly absorb the surplus.)

This shift keeps renewables’ prices headed relentlessly downward, and brings both the technology and its financing in reach of the masses. Denmark’s 32-year shift from centralized coal-fired power plants to distributed wind and cogeneration plants (the latter largely powered by agricultural wastes) was possible partly because 86 percent of those Danish wind machines are owned by farmers and their communities. Likewise, half of Germany’s renewable capacity is owned by citizens, cooperatives, and communities—vs. only about two percent in the corporate-centric U.S.

Crowdfunding, real estate investment trusts (REITs), potentially master limited partnerships (such as oil and gas drillers enjoy), commercial PACE bonds, and the explosive growth of third-party installer/owners such as SolarCity are likewise starting to revolutionize U.S. solar project financing. More broadly, innovations in financing, business models, and delivery channels are just as important and rapid as in technology, but are widely overlooked.

Distributed renewables save money, avoid price volatility and fuel insecurities, and prevent carbon emissions. But their unique strategic and marketing advantage is that if properly deployed in a largely distributed system, they can enable a resilient grid architecture (often called “netted islandable microgrids”) that makes big cascading blackouts improbable by design. This approach, already adopted by the Pentagon, would make vital power supplies resilient against superstorms, solar storms, physical or cyberattack, and other risks. After Superstorm Sandy, demand for such resilience is starting to become an important market driver.

In short, a more efficient, diverse, distributed, renewable electricity system is turning the power sector upside-down. Fasten your seat belts and hang on—we’re on an exciting ride to a more secure, affordable, job-rich, climate-safe, and pleasant destination than where the power industry was headed only a few short years ago. But we mustn’t take that outcome for granted. We must remain committed to tenaciously busting barriers and enabling the transformation to see it through.

Amory B. Lovins is cofounder, chief scientist, and chairman emeritus of Rocky Mountain Institute

 

 

8 thoughts on “Amory Lovins: Three Major Energy Trends to Watch”


  1. Well, that was a perfectly confusing and complicated appraisal of all sorts of things economic, wasn’t it? It almost sounds like we are making significant progress.

    The Rocky Mountain Institute are well-meaning folks, I guess, but what they are all about is how to how to make incremental renewable energy progress within the profit-making sphere. Renewable energy for fun and ->profit<- .

    And if we follow their prescription, in fifty to one hundred years, we may find a way to make most of our energy from renewables and do so profitably. Which, of course, will be too late.

    So the question is – why aren't we talking about large-scale not-for-profit ie, government projects more? You know, something that has a chance at actually building and deploying renewable infrastructure fast enough to prevent disaster?


  2. Inertia and sunk money in America prevent rapid change to a better, more sustainable system? opportunity cost just doesn’t figure into the American Money Mentality? As my favourite cut and paste from the web says:
    “Had the $4 Trillions+ spent on Iraq, been spent even only on conventional Solar/Thermal development of South Western U.S.A. – Today, Americans would receive a huge ROI ( “Return On Investment”) in cheap electricity, in place of horrendous tax rates to service unpayable war debt to China. Americans would be gainfully working, using this renewable, perpetual, eternal, clean, radiation free, radioactive waste free, domestic, electricity source – to compete in world markets with well priced products, to irrigate dry lands, to heat and cool homes, and much less foreign oil would have be imported, fewer “Parasite Nations” supported. This is the lost “opportunity cost” for having Saddam’s scrotum on the Bushes mantlepiece? Shiite eh!”
    P.S., (Oil, gas, wells do go dry, not really sourced from an eternal pipe up &Allah’s-ass, as some believe – But, the Sun never stops shining, Wind blows forever)
    To learn how China intends handling her energy problems see:
    http://www.youtube.com/watch?v=5UT2yYs5YJs ‎Kun Chen from Chinese Academy of Sciences on China Thorium half an hour of enlightenment here and needs note taking and rewinding to fully appreciate all that is revealed. U.S. and China in similar energy difficulties this video describes China’s resolutions for the very near future.


  3. Look at hubberts curve. The peak defines where half the reserves are gone and half remain. Look at the downslope. It lasts about as long as the upslope. A lot of oil will still be available for many years albeit at ever higher prices. Oil is vulnerable to substitution and replacement, particularly by renewable energy sources. Some oil will be consumed, but way less than today, forced by economics. In very short time, electrical generation and ibis trial oil use have dwindled. Large coal and nuclear plants are being shut down due to conservation and recession. That trend will continue with high energy costs. The only major consumer of oil left is American transportation(cars). So I do not agree that it will take 100 years for renewables to make an impact. One look at wind and solar growth rates will show you that. Nations with vision like Germany will excel, while those that lack vision will lag. Eventually, everyone will get the picture. Old fossil fuels equal ruin, renewables equal success.


  4. Hubert’s curves still define declining availability – but not cost at the pumps! China bids high now with strong Yuan against a weakening U.S. Dollar, ever undermined in purchasing price parity by constant “easings” buy the Feds? Gasoline at high prices at the pumps, even prices beyond the “average armpit’s budget”, and ever rising in price as availability diminishes, hardly a comfort to the U.S. worker? We look now to an America with diminishing population, a wider split, rich to poor, a very two class system with ever widening economic gap, and a ‘let them eat cake’ attitude arising?


  5. Rising fuel costs drive diminishing demand. US miles traveled and gasoline used is down since 2005 for the first time in history. Ironically, US oil addiction results in worldwide economic recession, which reduces energy use globally. That is because oil is on the down leg of Hubberts curve. It’s fortunate that US is driven by that. China and coal are the real problem, not oil. Fortunately, they have already saturated the country with air pollution, which drives them to correct that problem. That leaves tar sands and frack gas. Tar sands are the worst. US gas consumption drives tar sands production. Every gas station and every gas powered car should come with big pictures of the devastation caused by tar sands. Auto commercials should show the toxic tar sands tails spewing from auto exhausts. What is a car exhaust but smelly orifice. Advertise that car companies. It’s dumping the problem where no one can see it that is the real problem or where someone else gets the shaft that is the problem. That is what deniers are all about. That is where Peter helps.


  6. Thorium. It’s a dream alright. A pipe dream. Please explain why after sixty years, youtube engineers have discovered a miracle cure for all our energy ills better even than cold fusion, and the silly nuclear industry giants with all their engineers just happened to miss this easy DIY. Don’t bother to answer. It’s a rhetorical question. They would not, because they already looked and know its an uneconomical pipe dream. A skeptic might say, who should you believe, fans or professionals? For a more detailed and informed view on the subject, see daryanenergyblog. Until then, thorium isn’t showing up without massive government expenditure, that is, no private investment. Until then, you can wait until somebody actually builds a viable thorium reactor, or a breeder, or whatever … Whenever that happens. Until then, it looks like a dream. Pardon my skepticism, but we have seen this before. It’s always the magic silver bullet with nukes. Sixty years is enough. No more promises. No more failed breeders. No more failed reprocessing plants. No more Fukushimas. Lets not try to resurrect Godzilla as our family pet.

Leave a Reply

Discover more from This is Not Cool

Subscribe now to keep reading and get access to the full archive.

Continue reading