Lithium Prices Crashing as Lithium Free Batteries Emerge

March 23, 2023

I posted the other day on falling Lithium prices. Here’s more on the reason why.

Bloomberg:

A year and a half ago, China’s CATL put on a flashy event to make an announcement significant enough that Zeng Yuqun, the founder and chairman of the world’s biggest battery maker, served as emcee.

Zeng, who had just passed up Alibaba’s Jack Ma in the Bloomberg Billionaires Index, revealed that CATL was working on battery packs that would use lithium-ion and sodium-ion cells. While sodium is more abundant and offers potential safety benefits over lithium, the latter is dominant in EV batteries. Lithium-ion chemistries offer superior energy density, enabling drivers to travel further between charges.

While CATL laid out steps it was taking toward commercialization, the massive supplier to automakers including Tesla, Geely and BMW has been beaten to the punch — at least to the prototype stage. Last month, Chinese automaker JAC unveiled a test version of its Sehol E10X electric car that was packing sodium-ion cells.

Supplying the cells was HiNa Battery Technologies, a small and relatively new player to China’s battery scene, having been founded in 2017 following years of work at a scientific research institute. The debut of a vehicle using HiNa’s cells has battery experts reconsidering the potential for sodium-ion chemistries to play a role powering future EVs. BloombergNEF and other research firms have been projecting that EVs will be powered almost entirely by lithium-ion batteries.

Sodium-ion batteries can leverage the same manufacturing processes as the lithium-ion industry, meaning the former could benefit from advances that the latter had made over the last decade. The use of similar materials and components — from electrolytes and separators, to aluminum current collectors — means this emerging technology also could benefit from the existing economies of scale.

Sodium-ion batteries are more expensive than lithium-ion today because of low volumes and underdeveloped supply chains. But BNEF sees potential for material savings and energy-density improvements that would provide a viable pathway for sodium-ion cells to cost half what lithium iron phosphate cost today.

That would be a big deal. Lithium iron phosphate, or LFP, is the most common lithium-ion battery chemistry presently, due to a growing preference by automakers for its lower cost and significant energy-density improvements over the last decade.

The major challenge for sodium-ion cells are their lower energy density — cars packing these cells today would have to use heavier batteries for the same amount of kilowatt-hour capacity. The cells in the Sehol E10X use sodium-iron-manganese-copper cathodes and have an energy density of 140 watt-hour per kilogram, which reduces to 120Wh/kg at the battery-pack level. This is 25% lower than current LFP battery packs.

On the other hand, the major advantages to sodium-ion include a more geographically diverse distribution of raw materials. They’re also nonflammable and perform well at low temperatures.

If sodium-ion batteries could take even a small portion of share from lithium-ion batteries, it could help alleviate lithium supply issues and lower overall battery prices for EVs. Of course, there are many ifs and assumptions around input costs and what it will take to scale up. Plus, while the price of lithium has been volatile, it’s been trending downward as of the last four months. Sodium-ion also will have to compete with moving targets, as lithium-ion batteries improve over the long term.

Actually, several alternatives to Lithium being trialed.

Oilprice.com:

Tokyo University of Science is researching magnesium as a promising candidate for an energy carrier in next-generation batteries. For now the cycling performance and capacity of magnesium batteries need to improve if they are to replace lithium-ion batteries.

The TUS research team focused on a novel cathode material with a spinel structure. Following extensive characterization and electrochemical performance experiments, they have found a specific composition that could open doors to high-performance magnesium rechargeable batteries.

The team believes they have now found the right track to success as reported and published in the Journal of Electroanalytical Chemistry.

 Currently lithium-ion batteries have remained unrivaled in terms of overall performance for several applications, as evidenced by their widespread use in everything from portable electronics to cellular phone base stations. However, they suffer from a few important disadvantages that are difficult to ignore.

Among the various elements being tested as efficient energy carriers for rechargeable batteries, magnesium (Mg) is a promising candidate. Apart from its safety and abundance, Mg has the potential to realize higher battery capacities. However, some problems need to be solved first. These include the low voltage window that Mg ions provide, as well as the unreliable cycling performance observed in Mg battery materials.

To tackle these issues, a research team led by Vice President and Professor Yasushi Idemoto from Tokyo University of Science, Japan has been on the lookout for new cathode materials for Mg batteries. In particular, they have been searching for ways to improve the performance of cathode materials based on the MgV (V: vanadium) system.

Advertisement

One Response to “Lithium Prices Crashing as Lithium Free Batteries Emerge”

  1. rhymeswithgoalie Says:

    Toyota started with the Prius in Japan in 1997 and introduced to the US in 2000, ending production in 2017.

    They had a foothold, and they lost it.

    Tesla had to go all in with EVs to survive. Legacy (ICE) automakers still have internal competition between their old model lines and investment in new plug-in vehicles, and how they handle this corporate politics will make all the difference in the new marketplace. Ford and GM may be able to make the pivot in a timely fashion, but it looks like Toyota will be left in the dust.


Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: