Total area occupied by wind turbines and solar photovoltaic infrastructure (solid colored boxes) is roughly equal to the land occupied by railroads. (Map courtesy of NREL)
Critics of wind and solar routinely raise concerns about how much land would be required to decarbonize the US power sector. Fortunately, the answer is relatively little. A recent National Renewable Energy Laboratory (NREL) study shows that it would take less than 1 percent of the land in the Lower 48—that’s an area comparable to or even smaller than the fossil fuel industry’s current footprint. And when wind and solar projects are responsibly sited, the environmental and public health impacts would be far less harmful than those from extracting, producing and burning fossil fuels.
–
NREL found that the land area directly occupied by wind and solar infrastructure by 2035 would make up less than 1 percent of the land in 94 percent of the country and less than or equal to 7 percent of total land area in just three states. A key reason why a relatively small amount of land is needed is because only 2 percent of the total area within a wind farm is occupied by wind infrastructure, while the remaining 98 percent is available for agriculture, grazing or other uses. Offshore wind turbines also have a relatively small footprint and are able to use much larger turbines than land-based projects. Rooftop solar deployment, meanwhile, doesn’t require any land.
Of course, to deliver all this clean energy from wind-rich regions in the Midwest and Plains states to major load centers in the East will also require a lot of additional transmission lines. NREL found that total US transmission capacity would have to increase by 1.3 to 2.9 times current levels by 2035. This would require 1,400 to 10,100 miles of new high-capacity lines per year, assuming new construction began in 2026.
But the big news is NREL found that the total amount of land needed by 2035 to achieve our clean power goals with wind, solar and long-distance transmission lines (19,700 sq. mi) would be:
equivalent to the land area currently occupied by railroads (18,500 sq. mi)
less than half the area of active oil and gas leases (40,500 sq. mi)
less than one-third of the area currently needed for ethanol production (59,500 sq. mi), and
only slightly more than the historically disturbed land area for coal mining (13,100 sq. mi).
Plus, NREL’s main “All Options” scenario projects roughly 250,000 wind turbines in the United States, which is considerably less than the nation’s 1.5 million oil and gas wells.
Now for the more, uh, challenging news:
The fact that renewables will not require an inordinate amount of land is welcome news because limiting climate change’s worst impacts will require us to cut global heat-trapping emissions roughly in half by 2030 and to achieve net-zero emissions by 2050, according to the Intergovernmental Panel on Climate Change. Acknowledging that the United States is a leading contributor to carbon emissions, the Biden administration has committed to cutting US emissions 50 to 52 percent below 2005 levels by 2030. Most studies show that achieving these targets will require an unprecedented increase in wind and solar power to decarbonize the power sector and meet the increased demand for zero- carbon electricity to replace fossil fuels in building, industrial and transportation sectors.
A 2022 NREL study found that, to achieve President Biden’s goal of generating 80 percent zero-carbon electricity by 2030 and 100 percent by 2035, we will need to increase wind and solar power from about 14 percent of the US electricity mix in 2022 to between 60 and 75 percent by 2035 under the main scenarios. When combined with modest increases in geothermal and hydropower capacity at existing unpowered dams and upgrades to existing facilities, renewable energy would provide 70 to 85 percent of total US electricity generation by 2035. NREL projects that most of the remaining generation would come from existing nuclear plants and a small amount from gas plants, carbon capture and storage, hydrogen and biogas.
NREL also found that meeting the growing demand for zero-carbon electricity means overall US generation capacity would need to roughly triple between 2020 and 2035, including a combined 2,000 gigawatts (GW) of wind and solar capacity. This would require growth rates in the range of 43 to 90 GW per year for solar and 70 to 145 GW per year for wind by the end of the decade, which would mean more than quadrupling the current annual deployment rates for each technology.
Although siting, permitting and ramping up manufacturing for all of this new wind and solar generation will be challenging in this time frame, NREL’s study and other studies suggest that it is technically and economically feasible. For example, about 930 GW of wind and solar capacity and 420 GW of storage projects are now awaiting approval to connect to the transmission system, according to Lawrence Berkeley National Lab. This year alone, developers are planning to install 29 GW of utility-scale solar. That’s more than double the current record and represents more than half of all new US capacity, according to recent Energy Information Administration (EIA) data. EIA also projects US battery storage capacity to more than double in 2023.
The biggest surprise for me was the relatively small square for Transmission ROW, which I’d expect to take up more land as it criss-crosses the country.
March 5, 2023 at 7:17 pm
The biggest surprise for me was the relatively small square for Transmission ROW, which I’d expect to take up more land as it criss-crosses the country.