Antarctic Sediments Add Pieces to Sea Level Puzzle

September 24, 2016

Phys.org:

Tiny ocean fossils distributed widely across rock surfaces in the Transantarctic Mountains point to the potential for a substantial rise in global sea levels under conditions of continued global warming, according to a new study.

The study, led by Northern Illinois University geologist Reed Scherer, indicates the massive East Antarctic Ice Sheet (EAIS) has a history of instability during ancient and could be vulnerable to significant retreat and partial collapse induced by future climate change. The EAIS is the world’s largest and most significant player in potential .

The evidence is in the microscopic ocean fossils, known as diatoms, the researchers say.

antarc_diatom

For decades, scientists have been embroiled in a heated debate over how the diatoms, which were first discovered in the 1980s, became incorporated into the “Sirius Group,” a series of glacial sedimentary rocks exposed along the Transantarctic Mountains.

One group of scientists argued that the diatoms accumulated in a marine basin after ice sheet retreat and later, after it got much colder, were moved by the growing glaciers to the mountains. This interpretation suggested a dramatic retreat of the ice sheet between 3 million and 4.5 million years ago, during warm periods of the Pliocene Epoch. But other scientists contended the ice sheet remained stable for at least the past 5 million years, arguing that the diatoms were carried by the wind and deposited atop older sediments.

antarcti_pliomelt

“During certain intervals of Pliocene warmth, the sea level could have been as much as 75 feet higher than it is now,” Scherer said.

“The rise in atmospheric carbon dioxide from burning fossil fuel has now elevated the concentration to 400 parts per million, matching for the first time the levels of the warm Pliocene,” he added. “This makes the old debate about whether the ice sheet was notably smaller than it is now more relevant than ever.”

Models used for the research were developed by co-authors David Pollard of Pennsylvania State University and Robert M. DeConto of the University of Massachusetts.

“The question is always how quickly could sea levels rise, and we’re probably looking at several hundred years into the future before reaching a peak high that matches the Pliocene, but the problem of progressive sea-level rise is already upon us,” Scherer said. “The DeConto/Pollard models assume we continue to burn fossil fuels at the current pace. If we make improvements for the better, ice sheet reduction could be significantly delayed. We’d still have a problem, but we could keep the sea-level rise small and slow.”

“This latest work, together with other recent ice sheet modeling studies by DeConto and Pollard, clearly demonstrates the sensitivity of modern ice sheets to warming,” Scherer said. “No model is ever perfect, but these scientists use sophisticated physics and the latest data to produce atmospheric and ice models that are truly state-of-the-art, providing a picture of the past and glimpse into our future.”

Noted climate scientist Richard Alley, also of Penn State, rounds out the author list on the Nature Communications publication.

“This is another piece of a jigsaw puzzle that the community is rapidly putting together, and which appears to show that the ice sheets are more sensitive to warming than we had hoped,” Alley said. “If humans continue to warm the climate, we are likely to commit to large and perhaps rapid sea-level rise that could be very costly. No one piece of the puzzle shows this, but as they fit together, the picture is becoming clearer.”

More puzzle pieces in this video.

The interview above with Carys Cook of Imperial College relates to this research.
Phys.org:

The researchers, from Imperial College London, and their academic partners studied mud samples to learn about ancient melting of the East Antarctic ice sheet. They discovered that melting took place repeatedly between five and three million years ago, during a geological period called Pliocene Epoch, which may have caused sea levels to rise approximately ten metres.

Scientists have previously known that the ice sheets of West Antarctica and Greenland partially melted around the same time. The team say that this may have caused sea levels to rise by a total of 20 metres.

The academics say understanding this glacial melting during the Pliocene Epoch may give us insights into how sea levels could rise as a consequence of current global warming. This is because the Pliocene Epoch had carbon dioxide concentrations similar to now and global temperatures comparable to those predicted for the end of this century.

Dr Tina Van De Flierdt, co-author from the Department of Earth Science and Engineering at Imperial College London, says: “The Pliocene Epoch had temperatures that were two or three degrees higher than today and similar levels to today. Our study underlines that these conditions have led to a large loss of ice and significant rises in in the past. Scientists predict that global temperatures of a similar level may be reached by the end of this century, so it is very important for us to understand what the possible consequences might be.”

The East Antarctic ice sheet is the largest ice mass on Earth, roughly the size of Australia. The ice sheet has fluctuated in size since its formation 34 million years ago, but scientists have previously assumed that it had stabilised around 14 million years ago.

The team in today’s study were able to determine that the ice sheet had partially melted during this “stable” period by analysing the chemical content of mud in sediments. These were drilled from depths of more than three kilometres below sea level off the coast of Antarctica.

Analysing the mud revealed a chemical fingerprint that enabled the team to trace where it came from on the continent. They discovered that the mud originated from rocks that are currently hidden under the ice sheet. The only way that significant amounts of this mud could have been deposited as sediment in the sea would be if the ice sheet had retreated inland and eroded these rocks, say the team.

The academics suggest that the melting of the ice sheet may have been caused in part by the fact that some of it rests in basins below sea level. This puts the ice in direct contact with seawater and when the ocean warms, as it did during the Pliocene, the ice sheet becomes vulnerable to melting.

Carys Cook, co-author and research postgraduate from the Grantham Institute for Climate Change at Imperial, adds: “Scientists previously considered the East Antarctic ice sheet to be more stable than the much smaller ice sheets in West Antarctica and Greenland, even though very few studies of East Antarctic ice sheet have been carried out. Our work now shows that the East Antarctic ice sheet has been much more sensitive to climate change in the past than previously realised. This finding is important for our understanding of what may happen to the Earth if we do not tackle the effects of climate change.”

Advertisements

One Response to “Antarctic Sediments Add Pieces to Sea Level Puzzle”

  1. mboli Says:

    What part do the fossil diatoms play in this story? The NIU video seems to run crosswise against the initial part of this article with respect to that issue, but neither are very clear.
    I’m interested to know, as a former student of paleontology. (Which was back when the pterodactyls were still about.)


Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: